Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
نویسندگان
چکیده
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorded circadian rhythms from the whole embryonic SCN. Here, we tracked the onset and precision of rhythms in PERIOD2 (PER2), a clock protein, within the SCN isolated from embryonic and postnatal mice of undetermined sex. We found that a few SCN cells developed circadian periodicity in PER2 by 14.5 d after mating (E14.5) with no evidence for daily cycling on E13.5. On E15.5, the fraction of competent oscillators increased dramatically corresponding with stabilization of their circadian periods. The cells of the SCN harvested at E15.5 expressed sustained, synchronous daily rhythms. By postnatal day 2 (P2), SCN oscillators displayed the daily, dorsal-ventral phase wave in clock gene expression typical of the adult SCN. Strikingly, vasoactive intestinal polypeptide (VIP), a neuropeptide critical for synchrony in the adult SCN, and its receptor, VPAC2R, reached detectable levels after birth and after the onset of circadian synchrony. Antagonists of GABA or VIP signaling or action potentials did not disrupt circadian synchrony in the E15.5 SCN. We conclude that endogenous daily rhythms in the fetal SCN begin with few noisy oscillators on E14.5, followed by widespread oscillations that rapidly synchronize on E15.5 by an unknown mechanism.SIGNIFICANCE STATEMENT We recorded the onset of PER2 circadian oscillations during embryonic development in the mouse SCN. When isolated at E13.5, the anlagen of the SCN expresses high, arrhythmic PER2. In contrast, a few cells show noisy circadian rhythms in the isolated E14.5 SCN and most show reliable, self-sustained, synchronized rhythms in the E15.5 SCN. Strikingly, this synchrony at E15.5 appears before expression of VIP or its receptor and persists in the presence of blockers of VIP, GABA or neuronal firing. Finally, the dorsal-ventral phase wave of PER2 typical of the adult SCN appears ∼P2, indicating that multiple signals may mediate circadian synchrony during the ontogeny of the SCN.
منابع مشابه
NpgRj_Nn_1419 476..483
The mammalian suprachiasmatic nucleus (SCN) is a master circadian pacemaker. It is not known which SCN neurons are autonomous pacemakers or how they synchronize their daily firing rhythms to coordinate circadian behavior. Vasoactive intestinal polypeptide (VIP) and the VIP receptor VPAC2 (encoded by the gene Vipr2) may mediate rhythms in individual SCN neurons, synchrony between neurons, or bot...
متن کاملCryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.
Cryptochrome (Cry) 1 and Cry2 are regarded as critical components for circadian rhythm generation in mammals. Nevertheless, cultured suprachiasmatic nucleus (SCN) of neonatal Cry double deficient (Cry1(-/-)/Cry2(-/-)) mice exhibit circadian rhythms that damp out in several cycles. Here, by combining bioluminescence imaging of Per1-luc and PER2::LUC with multielectrode recording, we show develop...
متن کاملNeuromedin S-Producing Neurons Act as Essential Pacemakers in the Suprachiasmatic Nucleus to Couple Clock Neurons and Dictate Circadian Rhythms
Circadian behavior in mammals is orchestrated by neurons within the suprachiasmatic nucleus (SCN), yet the neuronal population necessary for the generation of timekeeping remains unknown. We show that a subset of SCN neurons expressing the neuropeptide neuromedin S (NMS) plays an essential role in the generation of daily rhythms in behavior. We demonstrate that lengthening period within Nms neu...
متن کاملFor whom the bells toll: Networked circadian clocks
Circadian cycles are robust and precise biological rhythms common in unicellular and multicellular organisms. Single cells have been shown to sustain autonomous near 24-h rhythms, however, many cells and tissues appear to require cell–cell interactions to maintain periodicity. This review highlights the mechanisms and benefits of coupling circadian oscillators. We focus on how populations of ci...
متن کاملCellular circadian oscillators in the suprachiasmatic nucleus remain coupled in the absence of connexin-36.
In mammals, the master circadian clock resides in the suprachiasmatic nucleus (SCN). The SCN is characterized by robust circadian oscillations of clock gene expression and neuronal firing. The synchronization of circadian oscillations among individual cells in the SCN is attributed to intercellular coupling. Previous studies have shown that gap junctions, specifically those composed of connexin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 38 6 شماره
صفحات -
تاریخ انتشار 2018